DIAGNOSIS SYSTEM IN CHICKEN DISEASE USING FORWARD CHAINING METHOD

Annisaa Utami^{*1}, Faisal Dharma Adhinata², Yaqutina Marjani Santosa³

¹Jurusan Teknik Informatika, Institut Teknologi Telkom Purwokerto ²Jurusan Rekayasa Perangkat Lunak, Institut Teknologi Telkom Purwokerto ³Jurusan Teknik Informatika, Politeknik Negri Indramayu

Email: ¹annisaa@ittelkom-pwt.ac.id, ²faisal@ittelkom-pwt.ac.id, ³yaqutinams@polindra.ac.id

(Naskah masuk: 21 Februari 2022, Revisi: 1 April 2022, diterbitkan: 28 Juni 2022)

Abstract

Chickens are animals that are mostly kept by the community both on a large and small scale traditionally. Because the population is large, the disease is also more complex, from mild disease to diseases that can be transmitted to humans so that it can cause death such as bird flu. Diseases in chickens such as Newcastle Disease (ND), Infectious Bronchitis (IB), Gumboro Disease and Flu. Problems about chicken disease faced requires a system to help in diagnosing diseases in chickens. Expert system is a system in which a variety of knowledge comes from an expert so that users can consult. Forward Chaining method is a method of searching or forward-looking where tracking begins with information that da and combine rules to produce an expected conclusion or goal. The study used 9 disease data, 34 symptom data and 20 cases of chicken disease. The results of the accuracy test get a value of 90%. The purpose of this study is: diagnosing chicken disease as a first step to applying artificial intelligence in the medical world, designing and applying systems. Based on the data, it can be concluded that the protythepe expert system by implementing the Forward Chaining Method can help farmers and chicken owners in diagnosing chicken diseases.

Keywords: Chickens, Expert system, Forward Chaining.

SISTEM DIAGNOSA PADA PENYAKIT AYAM MENGGUNAKAN METODE FORWARD CHAINING

Abstrak

Ayam merupakan hewan yang paling banyak dipelihara masyarakat secara tradisional baik besar maupun skala kecil. Karena populasinya banyak, maka penyakit juga lebih kompleks, dari penyakit yang ringan sampai ke penyakit yang bisa menular kepada manusia sehingga dapat mengakibatkan kematian seperti penyakit flu burung. Penyakit pada ayam contohnya *Newcastle Disease* (ND), *Infectious Bronchitis* (IB), *Gumboro Disease* dan Flu. Permasalahan tentang penyakit ayam yang dihadapi diperlukan sebuah sistem untuk membantu dalam mendiagnosa penyakit pada ayam. Sistem pakar merupakan sistem yang didalamnya dimasukkan pengetahuan yang berasal dari seorang ahli sehingga *user* dapat melakukan konsultasi . Metode *Forward Chaining* merupakan metode pencarian atau runut maju ke depan. Penelitian ini menggunakan 9 data penyakit, 34 data gejala dan 20 kasus penyakit ayam. Hasil pengujian akurasi mendapatkan nilai sebesar 90%. Tujuan penelitian ini adalah: mendiagnosa penyakit ayam. Berdasarkan hasil pengetahuan, bahwa sistem pakar dengan mengimplementasikan Metode Forward Chaining dapat membantu peternak serta pemilik ayam dalam melakukan diagnose penyakit ayam.

Kata kunci: Ayam, Forward Chaining, Sistem pakar.

1. INTRODUCTION

The development of technology today is undergoing many very rapid changes, along with the increasing and complex human needs. For example, computers that can be utilized in different fields such as Business, Health, Education, Psychology and so on. Health is a valuable thing for all living things, not least by chickens.[1]. Artificial intelligence is often used in medical applications as a complementary solution to find solutions to medical problems. [2]

Chickens are the most widely kept animals in traditional both large and small scale. Because of its large population, the accompanying diseases are also increasingly complex, from mild diseases to sicknesses that can be transmitted to humans and result in death such as avian influenza. However, the emergence of the problem of disease in chickens is allegedly because of the carelessness of breeders who pay less attention to food nutri, cleanliness and so on. Diseases that often infect chickens example Newcastle Disease (ND), Infectious Bronchitis (IB), Gumboro Disease and Flu.[3].

Problems about chicken diseases faced needed the system to help in diagnosing diseases in chickens, according to [4] An expert system is a system that seeks to adopt human knowledge to a computer, in order for a computer to solve a problem as experts are accustomed to.Expert systems are a field of study in artificial intelligence that has existed for decades. [5]

Expert system is a system in which is included various knowledge derived from an expert so that users can consult. One of the methods used in creating expert systems is the Forward Chaining Method[6]. Expert systems can be used to diagnose toddler diseases, for example expert systems to detect chronic lung diseases suffered by infants. [7]

Forward chaining method is the methods in expert systems. [8]. According to Russell and Norvig, the Forward Chaining Method is a search method or forward-looking tracking technique where tracking begins with da information and the incorporation of rules to produce an expected conclusion or goal. [9]. The Forward Chaining technique is appropriate for early determination of the disease by tracking the symptoms suffered. [10]

Research conducted by [11] Using the Forward Chaining Method a method that begins by collecting a number of facts that exist later from the collection of facts eventually results in conclusions.

Based on the background and identification of the above problems, a detailing of the issue can be drawn, namely the need to create a system in order to help the community, especially chicken farmers to get a diagnosis of chicken disease based on the symptoms of the disease. The aim of this study is: diagnosing chicken disease as a first step to applying artificial intelligence in the medical world, designing and applying systems capable of diagnosing chicken disease.

2. RESEARCH METHODS

The forward chaining method is included in the program code to be used for tracing symptom rules so that it can be concluded the disease in chickens. Then proceed with testing of system functionality that has been created with the black box method to test system functionality. Testing of the forward chaining method is also done by comparing with manual calculations with calculations in the system. The last stage is to implement the system so it tends to be utilized by the community, breeders. [12] Research by [13] diagnosed anemia using the Bayes Theorem Method and obtained a 90% accuracy score. Unlike the research conducted by [9] and [13].

Research conducted by [9]uses the Method of Forward Chaining however, using a different research object, namely a common disease in humans. Research by [9] conducted black box testing and did not get test results in the form of accuracy scores.

In this review, the authors will use the same method of Forward Chaining but using a different research object, namely chicken disease. The author will do the test in the type of accuracy value results.

2.1. Forward Chaining Method

Advanced reasoning methods that can be used in expert systems. In advanced reasoning, the rules are tested one after the other in a particular order. When each standard is tried, the will assess whether the circumstances are correct or wrong. Assuming the circumstances are correct, then the rule is saved then the next rule can be tested. This process will repeat until the entire basis of the rules is tested with various conditions[14].

2.1.1. Knowledge Acquisition

Knowledge acquisition is the activity of finding and collecting data derived from experts.

2.1.2. Representation of Knowledge

2.1.2.1. DFD Planning

Data Flow Diagram (DFD) is a data flow diagram that describes data in processes by the system. Data flow diagrams describe data flow notation in a system.[15]

This context diagram has a process that determines chicken disease with two entities, namely admin and user such as Figure 1.[13]

.

2.2. Knowledge Base

The knowledge base is at the core of the expert system program because it is a representation of knowledge that stores the basis of rules and data

ojmpiom				Disease					
	P01	P02	P03	P04	P05	P06	P07	P08	P09
G01	\checkmark								
G02	~								
G03		\checkmark							
G04		\checkmark							
G05		\checkmark							
G06	\checkmark								
G07		\checkmark			\checkmark				√
G08		✓				\checkmark	✓		
G09			\checkmark						
G10			\checkmark				\checkmark		
G11			√						
G12			\checkmark						
G13			1						
G14				√			1	\checkmark	
G15				✓					
G16				1					
G17				1					
G18					✓				
G19					1				
G20						1			
G21									
G22									
G23									
G24									
G25						•			
G26									
G27									
G28									
G29									
G30								\checkmark	
G31								\checkmark	
G32									\checkmark
G33							√		
									1

about chicken diseases. Figure 2 is a decision that is used as a reference in making tree rule decisions.

Figue 2.	Table	rule	decisision
----------	-------	------	------------

Table	1.	Disease	Table	

P01	Avian encephalomyelitis (AE)
P02	Infectious Coryza (SNOT)

- P02 P03 Chickenpox
- Hellicopter Diseade(HD) P04
- Infectious Bursal Disease(IBD) P05
- P06 Chronic Respiratory Disease(CRD)
- P07 Colibacillosis
- P08 Salmonellosis
- P09 Cholera

Table 1 above describes diseases arising from the symptoms shown in table 2 below:

Table 2. Symptom Table				
G01	Paralysis			
G02	decrease in egg production			
G03	puffy eyes			
G04	fishy eyes			
G05	no appetite			
G06	head to neck tremor			
G07	dehydration			
G08	dull fur			
G09	Grayish-colored humpback			
G10	respiratory disorders			
G11	hump under the airway			
G12	there are scabs			
G13	blackish color			
G14	diarrhea			
G15	weak			

016	1 11 1 4
GI6	abnormal hair growth
G17	lazy to move
G18	dirty cloacal area
G19	peck the cloacal area
G20	thin body
G21	breathe open mouth
G22	stuffy nose
G23	snoring sound
G24	mucus in the mouth
G25	sometimes bloody urine
G26	vomiting hair clots
G27	inflamed eyelids
G28	there is a melting of eye droppings
G29	there is a nose melt
G30	swelling of the next eye
G31	inflammation under the skin
G32	swollen joints and soles of the feet
G33	diarrhea is green

G34 special smelly dilute diarrhea

After creating a tree diagram, the next step is to convert the tree diagram into a rule of production. The method of production rules is usually written in the form of if(if-then). This rule can be said to be a relationship of two-part implications, namely the premise (if) and the conclusion(then) part. If the premise is fulfilled then the conclusion section will also be correct. [14]

Rule 1	IF paralysis AND decrease in egg production then AE
Rule 2	IF head to neck tremor AND decrease in egg production then AE
Rule 3	IF paralysis AND head to neck tremor then AE
Rule 4	IF puffy eyes AND fishy eyes AND no appetite then SNOT
Rule 5	If fishy eyes AND dehydration then snot
Rule 6	IF fishy eyes AND dull fur then snot
Rule 7	IF Grayish colored humpback AND respiratory disorders then chickenpox
Rule 8	IF hump under the airway AND there are scabs then chickenpox
Rule 9	IF Grayish clored humpback AND blackish color AND there are scabs then chickenpox
Rule 10	IF diarrhea AND weak AND abnormal hair growth then HD
Rule 11	if diarrhea AND lazy to move AND abnormal hair growth then hd
Rule 12	IF diarrhea AND weak AND lazy to move AND abnormal hair growth then HD
Rule 13	IF dirty cloacal area AND dehydration then ibd
Rule 14	IF dirty cloacal area AND peck the cloacal area then ibd
Rule 15	IF thin body AND dull fur AND breathe open mouth then CRD
Rule 16	IF breathe open mouth AND stuffy nose then CRD
Rule 17	IF mucus in the mouth AND snoring sound then CRD
Rule 18	IF dull fur AND diarrhea is green then cholera
Rule 19	IF diarrhea AND diarrhea is green then cholera
Rule 20	IF respiratory disorders AND diarrhea AND diarrhea is green then cholera
Rule 21	IF diarrhea AND swelling of the next eye AND inflammation under the skin then colibacillosis
Rule 22	IF swollen joints and soles of the feet AND dehydration AND special smelly dilute diarrhea then salmonellosis

Figue 3. Rules IF-Then

2.3. Flowchart Forward Chaining Method

Figure 4. Flowchart Forward Chaining Methods

Forward chaining is a method that based on data or facts leading to the conclusion [16]. The operation of forward chaining starts with input the facts into working memory, then match the fact with known rules [17]. Defining the structure of data control rules written in the structure of If - Then and given a number of rules to distinguish the rules with each other. If the data is match, then the rule is executed and operation stopped when no more rules can be executed [16]. Flowchart of forward chaining method shown in Figure 4.

3. RESULTS AND DISCUSSIONS

3.1. Disease diagnosis results page

Research and prototypes of this expert system were made as one of the auxiliary media to diagnose chicken disease based on the input of disease symptoms. This study uses symptom input based on interviews with experts, namely veterinarians. Expert system to simplify and speed up the diagnosis process needed by chicken owners or chicken farmers.

- a. Insaning the symptoms of the disease
 - Paralysis
 - decrease in egg production

And it can be seen that the symptoms of the disease include rule 1 that get the results of diagnosis of Avian en¬cephalomyelitis (AE).

IF paralysis AND decrease in egg production then \mbox{AE}

b. Input of disease symptoms into the system

Can be seen in figure 5 and figure 6 is an input of symptoms that can be inputted by chicken farmers using the Forward Chaining Method.

Figure 6. Input of Disease Symptoms

c. Disease diagnosis results page

In figure 7 is the result of a diagnosis of the disease after inputting the symptoms of chicken disease. on this page there is information about the symptoms of the disease, the rules of the disease, the results of diagnosis and treatment

Hasil Diagnosa	
Gejala yang dipilih	GQ1 - Kelumpuhan (Ya) GQ2 - Penurunan pirofukki tellur (Ya)
Aturan (rule) yang sesuai	IF 601 AND 602 THEN P01
Hasil Diagnosa	Avian Encephalomytelitis(AE)
Pengobatan	a. afkrayam yang sakit parah untuk mencegah meluasnya penyebaran bibit penyakit. b. tutuk yann dengan kodati belum parah perlu disolasi dan diberi nutrisi yang cakup, serta disuplementasi dengan vitamin (Yita Stress atau Fortwit). c. Yith dentifika giorapha isida (Penze atu Neo Anteng) taka uléhyele (Formades atau Sporades) yang sensitif untuk vins in
	C Ulangi Diagnosa

Figure 7. Disease Diagnosis Results Page

3.2. Testing

a. Accuracy Testing

Accuracy testing is performed to find the percentage of accuracy in the classifier process against the tested data. Accuracy rate calculated using formulas[18]

$$Accuracy = \frac{\sum match}{\sum tp}. \ 100\% \tag{1}$$

 $\sum match$ = the correct number of classifications $\sum match$ = amount of data testing

Conducting other tests by testing 20 cases, after testing, 18 cases were produced. From the test, the amount of accuracy is as follows

$$Accuracy = \frac{\sum match}{\sum tp}. \ 100\%$$
$$= \frac{18}{20}.100\%$$

=90%

b. Blackbox Testing

After the expert system is successfully built, further testing is carried out with a black box to test the functionality of the system. Based on tests conducted with trials of the system involving prospective users, including chicken farmers, animal health extension and animal experts, all functions on the system have functioned in accordance with the expected so that it can be used by the user. The black box tests that have been done are presented in the conclusions on table 3.

Table 3. Black Box Test Results					
No	Input	Expected	Output	Conclusion	
		Results			
1	Login	The system	Get into the	Succesfully	
		can log in to	system		
		the system			
2	Symptom	The system	Symptom	Succesfully	
	data	can store	data		
		symptom	successfully		
		data	saved		
3	Disease	The system	Disease data	Succesfully	
	data	can store	successfully		
		disease data	stored		
4	Data on	The system	The	Succesfully	
	disease	displays the	diagnosis		
	diagnosis	diagnostic	result was		
	results	results	successfully		
			displayed		
5	User data	The system	User data	Succesfully	
		displays user	information		
		data			

4. CONCLUSION

Based on the results of research that has been done, it can be concluded that the expert system protype by implementing the Forward Chaining Method that can help farmers and chicken owners in diagnosing disease results. The study used 20 case data. The results of the accuracy test get a value of 90%.

BIBLIOGRAPHY

- E. Dewi, S. Mulyani, and I. N. Restianie, "Aplikasi Sistem Pakar Untuk Mendiagnosa Penyakit Anak (Balita) Dengan Menggunakan metode Forward Chaining," vol. 1, no. 1, pp. 6–7, 2012.
- [2] F. M. E. Uzoka, O. Obot, K. Barker, and J. Osuji, "An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems," *Comput. Methods Programs Biomed.*, vol. 103, no. 1, pp. 10–27, 2011, doi: 10.1016/j.cmpb.2010.06.003.
- [3] T. Suriatno, "Chicken Disease Diagnosis Expert System Using Case Base Reasoning Method in the Office Livestock and Animal Health Bengkulu City Sistem Pakar Diagnosa Penyakit Ayam Menggunakan Metode Case Base Reasoning di Kantor Dinas Peternakan dan Kesehatan Hewan Kota," pp. 124–133, 2021.
- [4] B. Berlilana, F. D. Prayoga, and F. S. Utomo, "Implementasi Simple Additive Weighting dan Weighted Product pada Sistem Pendukung Keputusan untuk Rekomendasi Penerima Beras Sejahtera," J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 419, 2018, doi: 10.25126/jtiik.201854768.
- [5] W. P. Wagner, "Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies," *Expert Syst. Appl.*, vol. 76, pp. 85–96, 2017, doi: 10.1016/j.eswa.2017.01.028.
- [6] H. Fuad and H. Susilo, "Perancangan Sistem Pakar Diagnosa Penyakit Ayam Dengan Metodologi Berbasis Objek," vol. 6, no. 1, pp. 17–20, 2016.
- M. Ochab and W. Wajs, "Expert system supporting an early prediction of the bronchopulmonary dysplasia," *Comput. Biol. Med.*, vol. 69, pp. 236–244, 2016, doi: 10.1016/j.compbiomed.2015.08.016.
- [8] C. Fiarni, A. S. Gunawan, Ricky, H. Maharani, and H. Kurniawan, "Automated Scheduling System for Thesis and Project Presentation Using Forward Chaining Method with Dynamic Allocation

Resources," *Procedia Comput. Sci.*, vol. 72, pp. 209–216, 2015, doi: 10.1016/j.procs.2015.12.133.

- [9] M. D. Ariyawan, "Aplikasi Sistem Pakar Diagnosa Penyakit Umum Pada Manusia Berbasis Web," J. Elektron. Ilmu Komput. Udayana, vol. 7, no. 2, pp. 59–67, 2018.
- [10] T. Harihayati and L. Kurnia, "Sistem Pakar Mendiagnosa Penyakit Umum Yang Sering Diderita Balita Berbasis Web Di Dinas Kesehatan Kota Bandung," 2012.
- [11] M. Ibrohim and N. Purwanty, "Rancang Bangun Aplikasi Identifikasi Gaya Belajar Siswa Dengan Metode Forward Chaining (Studi Kasus: Sekolah Dasar Negeri Sumampir)," J. ProTekInfo, vol. 4, no. 1, pp. 19–28, 2017.
- [12] W. Kusrini, F. Fathurrahmani, and R. Sayyidati, "Sistem Pakar untuk Diagnosa Penyakit Ayam Pedaging," *Edumatic J. Pendidik. Inform.*, vol. 4, no. 2, pp. 75–84, 2020, doi: 10.29408/edumatic.v4i2.2616.
- [13] N. Sulardi and A. Witanti, "Sistem Pakar Untuk Diagnosis Penyakit Anemia Menggunakan Teorema Bayes," J. Tek. Inform., vol. 1, no. 1, pp. 19–24, 2020, doi: 10.20884/1.jutif.2020.1.1.12.
- [14] jogiyanto, Pengembangan Sistem Pakar menggunakan Visual Basic. Yogyakarta: Andi Offset, 2003.
- [15] R. S. Pressman, Rekayasa Perangkat Lunak Pendekatan Praktisi Edisi 7 (Buku Satu). Andi, 2010.
- [16] P. Soepomo, "Sistem Pakar Untuk Mendiagnosa Penyakit Kelinci Berbasis Web," J. Sarj. Tek. Inform., vol. 2, no. 1, pp. 22–32, 2014.
- [17] Y. S. Putra, M. A. Muslim, and A. Naba, "Game chicken roll dengan menggunakan metode forward chaining," *J. EECCIS*, vol. 7, no. 1, pp. 41–46, 2013.
- [18] D. Kusbianto, R. Ardiansyah, and D. A. Hamadi, "Implementasi Sistem Pakar Forward Chaining Untuk Identifikasi Dan Tindakan Perawatan Jerawat Wajah," J. Inform. Polinema, vol. 4, no. 1, p. 71, 2017, doi: 10.33795/jip.v4i1.147