
Jurnal Teknik Informatika (JUTIF)  DOI: https://doi.org/10.52436/1.jutif.2024.5.2.1728 
Vol. 5, No. 2, April 2024, pp. 645-651  p-ISSN: 2723-3863 
  e-ISSN: 2723-3871 

645 

COMPARISON OF MNOTE APPLICATION DEVELOPMENT EFFICIENCY USING 

LOW CODE AND FULL CODE DEVELOPMENT APPROACHES 
 

Gagah Aji Gunadi*1, Dana Sulistyo Kusumo2  
 

1Informatics, School of Computing, Telkom University, Indonesia 
2Software Engineering, School of Computing, Telkom University, Indonesia 

Email: 1gagahajigunadi@student.telkomuniversity.ac.id, 2 danakusumo@telkomuniversity.ac.id 

 

(Article received: January 13, 2024; Revision: January 21, 2024; published: Mei 06, 2024) 

 

Abstract 
 

Low Code Development has become more popular in recent years as it offers the ability to develop applications 

faster. Before the concept of Low Code programming, problems related to the efficiency of application 

development time were often faced when using manual or Full Code programming approaches. The problem 

becomes crucial when working on a large-scale application development scope. In this research, the author tries 

to measure and compare the difference in development efficiency between Low Code and Full Code approaches 

in the development of a web-based application called MNote, an order recording application for D'Happy food 

and beverage restaurant in Pemalang, Central Java. The author used OutSystems as the Low Code Platform (LCP) 

and MongoDB, ExpressJS, ReactJS, NodeJS (MERN) in the Full Code approach. The results showed that the Low 

Code Development approach takes 51.12% faster than the Full Code Development approach in developing the 

MNote application. Based on the results of the research, it can be concluded that the use of Low Code Development 

has a considerable influence in terms of time efficiency and ease of database integration. 

 

Keywords: full code development, low code development. 

 

 

1. INTRODUCTION 

In general, programming means writing code in 

text programming languages such as C, JavaScript, 

Python, and Java [1]. This method is referred to as 

Full Code Development (FCD). FCD itself is the most 

commonly used programming concept which 

requires expertise from the developer himself. FCD 

or also known as code-based is referred to as the first 

generation in the history of software development [2].  

On the other hand, a new programming concept 

finally emerged and was named Low Code 

Development (LCD). LCD allows developers to 

spend less time in the development process of an 

application project by reducing manual code writing 

[3]. In the LCD concept, the development process is 

done using a platform known as Low Code 

Development Platform (LCDP) which is an 

ecosystem for developing applications to minimize 

manual code writing [4]. 

One LCDP that is often used is OutSystems, an 

LCDP that can be used to develop web-based and 

mobile applications [5]. OutSystems has several 

features that can help developers to develop 

applications by minimizing bugs by validating the 

effects of each change made [6]. OutSystems offers 

the ability to support higher productivity, lower costs, 

maintenance tends to be easy, and accessibility for 

cross platforms [7]. However, it also has its 

downsides, especially in terms of limited 

customization options [7]. On the other hand, the 

advantages provided by LCD cannot be used properly 

without experience in programming [8]. Algorithm-

related thinking skills can be trained through games 

and math [9]. Basically, programming requires a lot 

of time to practice algorithms in order to have the 

ability to solve problems. The ability to solve 

problems can help developers understand, modify 

program code, and algorithms to adapt to various 

situations [10]. 

Based on the explanation of the advantages of 

LCD, the question arises as to how efficient the use 

of LCD is when compared to FCD. Therefore, the 

main objective of this research is to measure and 

compare the efficiency of development time when 

using LCD and FCD approaches. To help fulfill this 

goal, the first author uses a case study of the MNote 

application. MNote is a web-based application to help 

the order recording process at a restaurant. 

Referring to previous research conducted by 

Trigo et al. (2022) shows that the difference in 

application development time using LCD and FCD 

reaches 864 minutes or the equivalent of 14.4 hours 

[11]. The study states that all use cases require less 

time to be implemented using the LCD approach.  

Another study conducted by Richardon et al. (2016) 

stated that there are four main features in LCD that 

are focused on as advantages [12]. One of the superior 

features is the ability to drag-n-drop. This ability 

means that LCD provides ready-to-use components 

and developers can also focus more on the logical side 

of development only [13]. 

https://doi.org/10.52436/1.jutif.2024.5.2.1728
mailto:gagahajigunadi@student.telkomuniversity.ac.id
mailto:danakusumo@telkomuniversity.ac.id


646   Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 645-651 

In accordance with the purpose of this research, 

which is to measure and compare development 

efficiency using LCD and FCD approaches, the first 

author uses MongoDB, Express, React, and Node 

(MERN) as FCD. MERN is a set of free, open source, 

JavaScript-based, multi-platform, and widely 

supported technologies from its community that are 

used together [14]. M or MongoDB is used as a 

NoSQL Database, E or Express and N or Node are 

used simultaneously to build servers, and R or React 

as a frontend that can be seen and interacted with 

users. Based on a study conducted by Mehra et al. 

(2021) with the title "MERN Stack Web 

Development" shows the results that the MERN stack 

is ideal for website projects with a large number of 

pre-built connections [15]. 

2. RESEARCH METHODS 

In meeting the objectives of this research, the 

author chose the Use Case Points (UCP) method. 

UCP is a method to estimate the number of man-hours 

needed to complete application development based 

on use cases. UCP itself consists of three components, 

namely unadjusted use case points (UUCP), technical 

complexity factor (TCF), and environment 

complexity factor (ECF). The three components are 

calculated separately using weighted values, 

subjective values, and limiting constants [16]. In 

addition, a method that can also be used is 

productivity factors (PF). 

Here are the formulas for each component. 

𝑈𝐶𝑃 = 𝑈𝑈𝐶𝑃 ∗ 𝑇𝐶𝐹 ∗ 𝐸𝐶𝐹 (1) 

𝑇𝐶𝐹 = 0.6 (0.01 ∗ 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟) (2) 

𝐸𝐶𝐹 = 1.4 + (−0.03 ∗

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟) (3) 

𝑃𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑠

𝑈𝐶𝑃
 (4) 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝐻𝑜𝑢𝑟 = 𝑈𝐶𝑃 ∗ 𝑃𝐹 (5) 

Equation (5) only applies if there is historical 

data from previous projects that have been done. If 

there is none, then the following can be considered. 

 Using UCP values from previous projects. 

 Using a score of 20 or a score in the range of 15-

30. 

This research was conducted in several stages. 

The stages of this research are attached in Figure 1. 

The first stage is 'Literature Review' to get the use 

cases of the MNote application. This stage is carried 

out by reading the Software Design Description 

(DPPL) document of the MNote application. The 

second stage is ’UI Design' by designing the interface 

design of the MNote application using Figma. The 

third stage is ‘Full Code Development’ which means 

developing MNote using using MERN.  The fourth 

stage is ‘Low Code Development' which means 

developing MNote using OutSytems. The fifth or 

final stage is 'Development Efficiency Calculation' 

using UCP and PF, also calculate the percentage of 

development time comparison between full code and 

low code approaches. 
 

 
Figure 1. research stages 

 

 
Figure 2. architecture diagram 

 

Before going into the development stage of the 

MNote application, the author first designed the 

architecture diagram as shown in Figure 2. 

The architecture used for FCD is React as client-

side or frontend, Express and Node as server-side or 

backend, and MongoDB as a database. While the 

architecture used for LCD is OutSystems as client-

side and server side coupled with MongoDB 

Integration, and MongoDB as a database. 

Related to the use cases of the MNote 

application can be seen in Figure 3 in the following 

page. Actors in the MNote application are users / 

users and admins. Users can do several things, the 

first is Login in the form of a user account validation 

page to enter the application. Before logging in, users 

can register on the Register menu to create an 

account. After logging in, users can access the 

following menus. 

The first menu is Dashboard which is used to 

display all order data on the day the user logs in. The 

next menu is Summary which is used to display all 

order data depending on the date filter selected. The 

next menu is Search which is used to search for order 

data by name. The next menu is Settings which is 

used to update user account data. The last menu is 

Help which is used to view the help that has been 

provided regarding the MNote application. 



Satu, et al., COMPARISON OF MNOTE APPLICATION …   647 

 
Figure 3. use case diagram 

The next actor, the admin, can do several things. 

The first menu is Register which is used to create a 

new admin account. Next is Login which is used to 

validate the account and enter the MNote application 

as an admin. After Login, the admin can access the 

following menus. The first menu is the Dashboard, 

which is used to view all order data from all users. 

The second menu is Manage Users which is used to 

manage account data. The third menu is Manage 

Helps which is used to manage Help data. The fourth 

or last menu is Manage Prices which is used to 

manage order price data. The description of each use 

case and its weight can be seen in Table 1. Each use 

case in Table 1 has a weight based on the category 

that can be seen in Table 2 by the end of this page. 

 

Table 1. use case list 

Code Name Description Weight 

UC-1 Register Registering a user account 5 

UC-2 Login Accessing the app using a user account 5 

UC-3 Dashboard Displays order data on the user's day Login 10 

UC-3.1 Add Order Add order data 15 

UC-3.2 Delete Order Delete order data 10 

UC-4 Summary Display order data based on date filters 10 

UC-5 Search Display order data based on order name filter 10 

UC-6 Settings Update account data 5 

UC-7 Help Display app-related help 5 

UC-8 Register Admin Register an admin account 5 

UC-9 Login Admin Access the application using an admin account 5 

UC-10 Dashboard Admin Display all order data from all users 10 

UC-11 Manage Users Manage account data 10 

UC-12 Manage Helps Manage Help data 5 

UC-13 Manage Prices Manage order price data 10 

 

Table 2. use case weight 

Category Description Weight 

Simple 
Simple interface, interacting with only one model in the database, implementation of three steps or less, involving 

less than five classes. 
5 

Average 
More interfaces, interacting with two or more models in the database, four to seven-step implementation, 

involving five to ten classes. 
10 

Complex 
Complex interface, interacting with three or more modes on the database, implementation of more than seven 

steps, involving more than ten classes. 
15 

3. RESULTS 

3.1. Development Time 

Table 3. development time 

Code Full Code Low Code 

UC-1 78 45 

UC-2 45 25 

UC-3 146 101 

UC-3.1 42 45 

UC-3.2 26 60 

UC-4 92 50 

UC-5 32 18 

UC-6 63 30 

UC-7 43 23 

UC-8 43 12 

UC-9 52 11 

UC-10 59 32 

UC-11 83 16 

UC-12 94 23 

UC-13 151 22 

Total (minutes) 1049 513 

Total (hours) 17.48 8.55 

 

MNote application development time is 

measured based on each use case. Time measurement 

starts when the first author as a developer creates an 

application project folder as well as program files 

related to the use case being worked on. Time 

measurement stops when the use case is complete and 

already functioning. This time measurement also 

includes when the author reads the documentation of 

each platform and looks for solutions when there are 

obstacles.  

The development time of each use case along 

with the total time can be seen in Table 3. In Table 3, 

almost all use cases require more implementation 

time when using the FCD approach. There are only 

two sub-use cases namely Add Order and Delete 

Order that require more time using LCD. This is 

influenced by the mechanisms used from the two 

different platforms. 

In the total development time section, FCD 

takes 1049 minutes or 17.48 hours to implement all 

use cases. While the LCD approach only takes 513 

minutes or 8.55 hours. Based on this data, it can be 

concluded that LCD takes 51.12% faster than FCD to 

implement all use cases. 



648   Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 645-651 

3.2. Development Time Efficiency 

To calculate the value of UCP, it is necessary to 

obtain the values of UUCP, TCF, and ECF. The value 

component of UUCP consists of unadjusted use case 

weight (UUCW) plus unadjusted actor weight 

(UAW). The UUCW value can be calculated by 

referring to Table 1 and Table 2, then the following 

details are obtained. Seven use cases with a weight of 

5, seven use cases with a weight of 10, and one use 

case with a weight of 15. Then the UUCW value can 

be seen in Equation (6). 

𝑈𝑈𝐶𝑊 = (7 ∗ 5) + (7 ∗ 10) + (1 ∗ 15) = 120(6) 

The second component of UUCP is UAW. Each 

actor has a weight that can be seen in Table 4. The 

results of the value of UAW can be seen in Table 5. 

After getting the UAW and UUCW values, the value 

of UCP can be seen in Equation (7). 

𝑈𝑈𝐶𝑃 = 𝑈𝑈𝐶𝑊 + 𝑈𝐴𝑊 = 120 + 6 = 126 (7) 

The next component that needs to be calculated 

is the TCF value. One of the TCF components is 

perceived complexity, which is the first author's 

subjective view of the complexity of the application, 

for example, it takes more time than developing a 

Single Page Application (SPA). The scale used is 1-

3, where 1 means not relevant, 2 is moderately 

relevant, and 3 is relevant. The value of TCF can be 

seen from Table 6 and Equation (8). 

𝑇𝐶𝐹 = 0.6(0.01 ∗ 13.5) = 0.081 (8) 

The next component is ECF. One of the ECF 

components is perceived impact, which is the 

subjective perception of the first author as a developer 

regarding the influence of environmental factors on 

the success of the application work. The scale used is 

1-3, where 1 means no effect, 2 is moderately 

influential, and 3 is influential. The value of ECF can 

be seen from Table 7 and Equation (9). 

𝐸𝐶𝐹 = 1.4 + (−0.03 ∗ 14) = 0,98 (9) 

After obtaining the UCP, TCF, and ECF values, 

the UCP value can be calculated in Equation (10). 

𝑈𝐶𝑃 = 126 ∗ 0.081 ∗ 0.98 = 9,9958 (10) 

After getting the UCP value in the previous sub-

chapter, as well as the total time required for each 

approach in Table 3, the PF value of each approach 

can be calculated in Equation (11) and Equation (12). 

𝑃𝐹 (𝐹𝐶𝐷) = 20 (11) 

𝑃𝐹 (𝐿𝐶𝐷) =
17.48

9
= 1.942 (12) 

The PF value for FCD is assigned a value of 20 

based on the provisions in Equation (4). This will be 

discussed further in the next sub-chapter related to 

estimation bias. 

 

Table 4. Unadjusted Actor Weight (UAW) 

Category Description Weight 

Simple Actors represent other systems with defined application programming interfaces. 1 

Average 
Actors represent other systems that interact through protocols, such as Transmission Control Protocol/Internet 

Protocol. 
2 

Complex Actors are people who interact through the application interface. 3 

 

Table 5. Total Unadjusted Actor Weight (UAW) 

Category Weight Total Result (weight * total) 

Simple 1 0 0 

Average 2 0 0 

Complex 3 2 6 

Total UAW 6 

3.3. Estimation Bias Value 

The estimation bias value in question is related 

to the estimated time of MNote application 

development due to the order of work from FCD and 

LCD. MNote application development using the FCD 

approach is done first, so the estimated hours value 

can use a value of 20 hours by following the 

provisions of Equation (5). Based on this data, the 

value of estimated hours for each approach can be 

calculated using Equation (5). 

𝐹𝐶𝐷 = 20 𝐻𝑜𝑢𝑟𝑠 (13) 

𝐿𝐶𝐷 = 9 ∗ 0.95 = 8.55 𝐻𝑜𝑢𝑟𝑠 (14) 

 

4. DISCUSSION 

4.1. Development Efficiency 

The percentage of 51.12% shows that the use of 

LCD significantly speeds up the development 

process. One of the factors affecting this result is 

related to the database configuration. In FCD, CRUD-

related functions must be typed manually with 

guidance on the documentation from MongoDB, but 

this gives the author as a developer the flexibility of 

writing code style. Whereas in LCD, the functions 

related to create, read, update, delete (CRUD) 

database are already available as built-in functions 

through integration with MongoDB so it is enough to 

call the required function.  This means that the author 

can implement each use case in less time. However, 

in this study there are two use cases, UC-3.2 and UC-



Satu, et al., COMPARISON OF MNOTE APPLICATION …   649 

4, which require more time in low code development. 

It should be noted that there is a bias in the estimated 

development time where the estimated FCD approach 

took 20 hours, while in fact it only took 17.48 hours. 

The LCD approach estimate took 8.55 hours which 

corresponds to the implementation of 8.55 hours as 

well. The results of this study are in line with research 

conducted by Trigo et al. (2022) that the PF value and 

total time required from the LCD approach is less or 

more efficient. 

4.2. Flexibility vs. Speed 

These results provide a better understanding of 

the trade-off between flexibility and speed in software 

development. Although the FCD approach provides a 

higher degree of flexibility e.g. in terms of writing 

style that is more in line with the author's preferences, 

the LCD approach can be chosen if a faster 

application development time is to be considered. 

This speed in development time is also 

supported by the database integration feature that 

facilitates connection to the database. Research 

conducted by Sahay et al. (2020) states that the use of 

LCDP is suitable for saving costs and time even 

though it still depends on the developer's ability and 

the modules of the LCDP used [17]. 

As the level of flexibility increases, so does the 

cost. A study conducted by Ogheneovo (2014) shows 

that as the lines of code increase, the software 

becomes more complex and many bugs appear, 

resulting in increased maintenance costs [18]. This 

can affect the costs incurred by developers. 

Therefore, the use of LCDP can be an option where 

the LCDP used by the first author, OutSystems, 

provides a free package with certain limitations. 

Furthermore, regarding development speed, 

research conducted by Varajão et al. (2023) showed 

that the total development time using code-based or 

FCD was 38.383 hours. Meanwhile, development 

using LCD shows a total time of 11.933 hours [19]. 

These results provide a comparison that LCD takes 

about 3.21 times faster than FCD. This is different 

from the research conducted by the first author where 

the results show that LCD takes 2.04 times faster than 

FCD. This is of course influenced by the number of 

use cases and other factors as in Table 6 and Table 7 

related to TCF and ECF. 
 

Tabel 6. TCF 

Technical Factor Description Weight Perceived Complexity Result (weight * perceived complexity) 

T1 Easy to Install 0.5 0 0 

T2 Special Security Features 1 3 3 

T3 Reusability 1 3 3 

T4 Easy to Use 0.5 3 1.5 

T5 Portable 1 2 2 

T6 Easy to Change 2 2 4 

Total TCF  13.5 

 

Tabel 7. ECF 

Environmental Factor Description Weight 
Perceived 

Impact 

Result (weight * 

perceived impact) 

E1 Part-time worker 0.5 2 1 

E2 Application Experience 1 3 3 

E3 Motivation 1 3 3 

E4 Analyst Capability 0.5 2 1 

E5 Platform Selected 2 3 6 

Total ECF  14 

 

4.3. TCF and ECF 

The number of Technical Factors in Table 6 

only totals six factors. In contrast to research 

conducted by Ochodek et al. (2011) where the 

number of Technical Factors amounted to 13 factors 

[20]. The reduction in the number of Technical 

Factors in this study is adjusted to the scale of the 

MNote application project which is an application 

with a small number of use cases with features that 

are not too complex.  

This reduction also applies to the Environmental 

Factor in this study which only contains five. This is 

different from research conducted by Ochodek et al. 

(2011) where the number of Environmental Factors 

amounted to eight factors. Another study by 

Yuliansyah et al. (2018) also used eight 

Environmental Factors [21]. The reduction in the 

number of Environmental Factors in this study is also 

adjusted to the scale of the Mnote application project 

and the weight of the Environmentai Factor which has 

less influence on the development of the MNote 

application. 

4.4. Security 

The use of MERN gives the first author 

flexibility in choosing the algorithm for hashing the 

password of the account. Unlike the hashing method 

in OutSystems which generally uses SHA512, 

SHA256, or MD5, in MERN the first author uses 

Blowfish-based Key Derivation Function (Bcrypt). 

The use of Bcrypt gives the first author the freedom 

to determine the Salt used in Bcrypt. On the other 

hand, the SHA512 algorithm that the first author uses 

on OutSystems will use a random Salt generated by 

OutSystems, so the author cannot determine the Salt 

that will be used. 



650   Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 645-651 

Research conducted by Batubara et al. (2021) 

shows that the use of Bcrypt will be safer from attacks 

such as Brute Force if it uses a combination of letters 

and numbers [22]. Another study by Basya et al. 

(2022) states that when compared to MD hashing 

with a high level of vulnerability, the use of SHA512 

is better with a medium level of vulnerability [23]. 

When compared to OutSystems which has MD, 

SHA256 and SHA512 algorithms, then in application 

data security is superior to FCD which uses Bcrypt as 

a password hash algorithm. 

4.5. Database Integration 

The use of the MongoDB database in the MNote 

application project was chosen because the number of 

relationships between data is only small. This also 

makes it easier for the first author to configure the 

database on the FCD and LCD. In LCD, the use of the 

mongoose module is necessary so that the backend 

application can connect to the database. After 

connecting, the first author must manually create 

models and controllers so that they can be used in the 

backend. 

Unlike FCD, database integration in FCD is 

easier because OutSystems already provides 

Database Integration. This feature makes it easier for 

the first author because there is no need to create 

models and controllers manually. All models and 

controllers can be automatically created by 

OutSystems by the way the first author must enter the 

database url and sample JSON file from the database. 

After the sample file is uploaded, OutSystems will 

generate the model and generate the controller for 

each model. This controller includes Create, read, 

update, delete (CRUD) functions and filters within it. 

For example, if the author wants to search for user 

data with the email "user1@mnote.com", then the 

first author simply selects the SearchUserDocuments 

function or controller and adds the filter '{email: 

user1@mnote.com}'. 

OutSytems' ability to automatically create 

database-related functions can increase the speed of 

application development by reducing the time needed 

to configure the database and functions. 

5. CONCLUSION 

Based on the results of this study which showed 

a difference of 51.12% in development time, it can be 

concluded that the development of MNote application 

using the LCD approach is significantly more 

efficient in terms of time compared to the FCD 

approach. The results of measuring the total 

development time of both approaches are measured 

using a time measuring device/stopwatch. The results 

of the development time efficiency comparison were 

calculated using the use case point formula and 

productivity factor formula. The results show that the 

use of  LCD allows developers to produce 

applications 51.12% faster than FCD. Although the 

FCD approach provides greater flexibility in 

customization and full control over the code such as 

writing style, it is more time-consuming. Therefore, 

for projects with tight time constraints and relatively 

simple development needs, the LCD approach can be 

a more efficient choice. 

The author has several suggestions for future 

research. The first suggestion is the implementation 

of a hybrid approach of the two approaches, namely 

FCD and LCD, may be a solution according to 

application needs. The use of FCD for complex 

features and LCD for simple features can be 

combined to still increase time efficiency but not 

sacrifice flexibility. The second suggestion is to train 

developers on the approach used. This can have an 

effect on time efficiency because developers will be 

more familiar with the approach used. The next 

suggestion is to adjust the approach based on the 

complexity of the application use cases to be 

developed, as can be seen in Table 2 regarding the use 

case weights. This will affect time efficiency and 

flexibility according to needs. 

REFERENCES 

[1] M. Hirzel, "Low-code programming 

models," Communications of the ACM, vol. 

66, no. 10, pp. 76-85, 2023. 

[2] M. Singh, N. Chauhan, dan R. Popli, "A 

framework for transitioning of traditional 

software development method to distributed 

agile software development," dalam 2019 

International Conference on Issues and 

Challenges in Intelligent Computing 

Techniques (ICICT), vol. 1, pp. 1-4, 

September 2019. 

[3] R. Waszkowski, "Low-code platform for 

automating business processes in 

manufacturing," IFAC-PapersOnLine, vol. 

52, no. 10, pp. 376-381, 2019. 

[4] R. Sanchis, Ó. García-Perales, F. Fraile, dan 

R. Poler, "Low-code as enabler of digital 

transformation in manufacturing industry," 

Applied Sciences, vol. 10, no. 1, hal. 12, 2019. 

[5] R. Martins, F. Caldeira, F. Sa, M. Abbasi, 

dkk., "An overview on how to develop a low-

code application using OutSystems," in 

Conference on Smart..., [Online]. Tersedia: 

https://ieeexplore.ieee.org/abstract/document

/9277404/, 2020. 

[6] F. R. Ribeiro, J. C. Metrôlho, dan J. 

Salgueiro, "Developing for Testability: Best 

Practices and the Opinion and Practice of 

OutSystems Professionals," dalam ICSEA 

2021, [Online]. Tersedia: 

https://www.researchgate.net/profile/Luigi-

Lavazza/publication/366958305_ICSEA_20

21_The_Sixteenth_International_Conference

_on_Software_Engineering_Advances/links/

63bb2e19c3c99660ebdc4ca9/ICSEA-2021-



Satu, et al., COMPARISON OF MNOTE APPLICATION …   651 

The-Sixteenth-International-Conference-on-

Software-Engineering-

Advances.pdf#page=92, 2021. 

[7] K. Talesra dan G. S. Nagaraja, "Low-code 

platform for application development," 

International Journal of Applied Engineering 

Research, vol. 16, no. 5, hal. 346-351, 2021. 

[8] R. Bernsteiner, S. Schlögl, C. Ploder, T. 

Dilger, dan F. Brecher, "CITIZEN VS. 

PROFESSIONAL DEVELOPERS: 

DIFFERENCES AND SIMILARITIES OF 

SKILLS AND TRAINING 

REQUIREMENTS FOR LOW CODE 

DEVELOPMENT PLATFORMS," dalam 

ICERI2022 Proceedings, hal. 4257-4264, 

IATED, 2022. 

[9] A. K. Erümit, "Effects of different teaching 

approaches on programming skills," Educ. 

Inf. Technol., vol. 25, hal. 1013–1037, 2020. 

DOI: 10.1007/s10639-019-10010-8. 

[10] A. A. Lawan, A. S. Abdi, A. A. Abuhassan 

and M. S. Khalid, "What is Difficult in 

Learning Programming Language Based on 

Problem-Solving Skills?," 2019 International 

Conference on Advanced Science and 

Engineering (ICOASE), Zakho - Duhok, Iraq, 

2019, pp. 18-22, doi: 

10.1109/ICOASE.2019.8723740. 

[11] A. Trigo, J. Varajão, dan M. Almeida, "Low-

Code Versus Code-Based Software 

Development: Which Wins the Productivity 

Game?," IT Professional, vol. 24, no. 5, hal. 

61-68, 2022. 

[12] C. Richardson dan J. R. Rymer, "The 

Forrester WaveTM: Low-code development 

platforms, Q2 2016," Forrester, Washington 

DC, 2016. 

[13] S. Pichidtienthum, P. Pugsee and N. 

Cooharojananone, "Developing Module 

Generation for Odoo Using Concept of Low-

Code Development Platform and Automation 

Systems," 2021 IEEE 8th International 

Conference on Industrial Engineering and 

Applications (ICIEA), Chengdu, China, 2021, 

pp. 529-533, doi: 

10.1109/ICIEA52957.2021.9436754. 

[14] S. Hoque, Full-Stack React Projects: Learn 

MERN stack development by building 

modern web apps using MongoDB, Express, 

React, and Node.js, [Online]. Tersedia: 

https://books.google.com/books?hl=en&lr=

&id=097dDwAAQBAJ&oi=fnd&pg=PP1&

dq=mern+stack&ots=CND7ahk9p3&sig=zS

yJUyFGos8LDbFcz18z4_zsMPM, 2020. 

[15] M. Mehra, M. Kumar, A. Maurya, dkk., 

"MERN stack web development," Annals of 

the Romanian …, [Online]. Tersedia: 

http://www.annalsofrscb.ro/index.php/journa

l/article/view/7719, 2021. 

[16] R. K. Clemmons, "Project estimation with 

use case points," The Journal of Defense 

Software Engineering, vol. 19, no. 2, hal. 18-

22, 2006. 

[17] A. Sahay, A. Indamutsa, D. Di Ruscio and A. 

Pierantonio, "Supporting the understanding 

and comparison of low-code development 

platforms," 2020 46th Euromicro Conference 

on Software Engineering and Advanced 

Applications (SEAA), Portoroz, Slovenia, 

2020, pp. 171-178, doi: 

10.1109/SEAA51224.2020.00036. 

[18] E. Ogheneovo, "On the Relationship between 

Software Complexity and Maintenance 

Costs," Journal of Computer and 

Communications, vol. 02, hal. 1-16, 2014, 

doi: 10.4236/jcc.2014.214001. 

[19] J. Varajão, A. Trigo, dan M. Almeida, "Low-

code Development Productivity: 'Is winter 

coming' for code-based technologies?," 

Queue, vol. 21, hal. 87-107, 2023, DOI: 

10.1145/3631183. 

[20] M. Ochodek, J. Nawrocki, dan K. Kwarciak, 

"Simplifying effort estimation based on Use 

Case Points," Information and Software 

Technology, vol. 53, no. 3, hal. 200-213, 

2011, ISSN 0950-5849, [Online]. DOI: 

10.1016/j.infsof.2010.10.005. 

[21] H. Yuliansyah, S. Qudsiah, L. Zahrotun, dan 

I. Arfiani, "Implementation of use case point 

as software effort estimation in Scrum 

Framework," IOP Conference Series: 

Materials Science and Engineering, vol. 403, 

hal. 012085, 2018, DOI: 10.1088/1757-

899X/403/1/012085. 

[22] T. Batubara, S. Efendi, dan E. Nababan, 

"Analysis Performance BCRYPT Algorithm 

to Improve Password Security from Brute 

Force," Journal of Physics: Conference 

Series, vol. 1811, hal. 012129, 2021, DOI: 

10.1088/1742-6596/1811/1/012129. 

[23] F. Basya, M. Hardjianto, dan I. Putra, 

"SHA512 and MD5 Algorithm Vulnerability 

Testing Using Common Vulnerability 

Scoring System (CVSS)," Buana 

Information Technology and Computer 

Sciences (BIT and CS), vol. 3, hal. 1-4, 2022, 

DOI: 10.36805/bit-cs.v3i1.2046.. 

 

 


