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Abstract 
 

This research explores the application of Generative Adversarial Networks (GANs) for detecting and classifying 

Anterior Cruciate Ligament (ACL) injuries using MRI images. The study utilized a dataset of 917 MRI images, 

each labeled as healthy, partially injured, or completely ruptured, to train the model. The performance of the GAN 

model was evaluated using a confusion matrix and a classification report, yielding an overall accuracy of 92%. 

The model demonstrated high proficiency in identifying healthy ACLs and partially injured ACLs but encountered 

some challenges in accurately identifying completely ruptured ACLs. Despite this, the results suggest that machine 

learning techniques, particularly GANs, have significant potential for enhancing the accuracy and efficiency of 

ACL injury detection. The ability of the model to distinguish between different degrees of injury could potentially 

aid in treatment planning. However, the study also underscores the need for further refinement of the model, 

particularly in improving its sensitivity in detecting severe ACL injuries. This research highlights the potential of 

machine learning in medical imaging and provides a solid foundation for future research in ACL injury detection 

and classification. 
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1. INTRODUCTION 

The Anterior Cruciate Ligament (ACL) is a 

crucial component of the knee joint, significantly 

maintaining knee stability and function. ACL 

injuries, particularly ruptures, are prevalent among 

young and active individuals, often leading to long-

term physical and psychological impacts [1]. The 

incidence of ACL injuries varies by sport type, with 

contact sports and fixed-object, high-impact 

rotational landing sports presenting a higher risk, 

especially among female athletes [2]. These injuries 

can contribute to residual instability in the knee, even 

after reconstruction, and if left untreated, may result 

in further damage and the potential for osteoarthritis 

[3]. Therefore, accurate detection and effective 

management of ACL injuries are paramount in 

preserving knee function and optimizing long-term 

quality of life. 

Detecting ACL injuries presents several 

challenges, particularly in their early stages. 

Traditional methods, such as clinical examination and 

patient history, often fail to diagnose these injuries 

accurately due to their subjective nature and reliance 

on patient-reported symptoms [1]. Furthermore, 

while magnetic resonance imaging (MRI) is 

commonly used for diagnosis, it has limitations in 

sensitivity and may not adequately visualize certain 

types of lesions [4]. These limitations can lead to 

underdiagnosis or misdiagnosis of ACL injuries, 

potentially resulting in inappropriate treatment 

strategies and poorer patient outcomes. Therefore, 

there is a pressing need for more objective and 

reliable methods for detecting ACL injuries. 

Because of its excellent sensitivity and 

specificity [4], MRI is frequently utilized for 

detecting ACL damage]. A few injuries, including 

those to the Kaplan fiber complex (KFC), have been 

observed to be initially missed on preoperative MRI 

scans [5]. This is essential because damage to the 

KFC can cause ACL-deficient knees to develop 

anterolateral rotatory instability (ALRI), affecting 

rehabilitation efforts' success or failure. 

Various challenges, including visualization 

issues, pitfalls of different imaging techniques, and 

diagnosing different injury types, can impact ACL 

injury detection and treatment. Visualization 

problems may arise when assessing ACL injuries. 

Interpreting MRI images can be difficult for less 

experienced medical personnel [6]. The complex 

anatomy of the knee joint and the ACL's small size 

can hinder injury visualization and identification [7]. 

Different imaging techniques have their 

limitations when detecting ACL injuries. 

Radiography helps rule out fractures but might not 

provide enough detail for soft tissue injuries like ACL 

tears [8]. Ultrasound has difficulties visualizing deep 

structures like the ACL [7]. CT scans can provide 
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detailed bony structure images but may not be 

effective in evaluating soft tissue injuries like ACL 

tears [6]. 

Diagnosing ACL injury types can be 

challenging. ACL injuries vary in severity from 

partial tears to complete ruptures. Identifying these 

injuries is crucial for determining treatment 

strategies. Meniscal tears often accompany ACL 

injuries and can complicate diagnosis [7]. 

Misdiagnosed or late-diagnosed ACL injuries 

have significant real-world implications, affecting 

patients, healthcare resources, and economic burdens. 

Delayed treatment can result in prolonged pain, 

functional limitations, and increased knee joint 

damage risk [9]. It can also delay rehabilitation, 

impact the quality of life, and increase the likelihood 

of secondary injuries [10]. 

The economic impact of misdiagnosed or late-

diagnosed ACL injuries is substantial. Surgical 

intervention, rehabilitation, and long-term follow-up 

care are often required. Surgery costs, including 

hospitalization, anesthesia, and postoperative care, 

can be significant [11]. Moreover, economic burdens 

continue beyond the initial treatment, as untreated or 

misdiagnosed patients may need additional medical 

interventions [10]. These costs strain healthcare 

resources and increase overall healthcare 

expenditure. 

Additionally, misdiagnosed or late-diagnosed 

ACL injuries may increase healthcare resource 

utilization. Patients might need multiple visits to 

healthcare providers for accurate diagnosis and 

treatment planning [9]. This increased utilization may 

result in longer waiting times, impacting healthcare 

system efficiency. 

The potential of machine learning in predicting 

and detecting ACL injuries has been explored in 

several studies. Jauhiainen et al. [12] applied machine 

learning techniques to predict ACL injury risk among 

female elite handball and soccer players, although the 

predictive ability was noted to be low from a clinical 

assessment standpoint. Similarly, Taborri et al. [13] 

utilized a machine-learning approach to assess ACL 

injury risk in female basketball players, 

demonstrating high accuracy and F1-score. In another 

study, Mazlan et al. [14] employed a support vector 

machine (SVM) to classify multi-class ACL injury 

data, achieving an accuracy of up to 100%. Stajduhar 

et al. [15] investigated the use of machine learning for 

detecting milder ACL injuries and complete ACL 

ruptures using MRI data, resulting in the high area 

under the curve (AUC) scores. Collectively, these 

studies underscore the potential utility of machine 

learning as a tool for predicting and detecting ACL 

injuries. 

There has been a growing interest in applying 

deep learning models for detecting ACL injuries. 

Several studies have demonstrated the effectiveness 

of Convolutional Neural Networks (CNNs) in 

diagnosing and classifying ACL injuries. For 

instance, Namiri et al. [16] reported high sensitivity 

and specificity of 2D and 3D CNNs in classifying 

ACL injuries using MRI images. Similarly, Razali 

[17] developed a CNN system that achieved an 

accuracy of 94.7% in classifying ACL injuries based 

on MRI images. Koga et al. [18] used video analysis 

to propose a new hypothesis for ACL injury 

mechanisms, suggesting a focus on specific landing 

techniques for prevention programs. Carlson et al. 

[19] also used video analysis to determine that high-

risk landing positions significantly influence the 

likelihood of ACL injuries, emphasizing the need for 

broad application of preventative training. 

In diagnosing ACL tears from knee MRI 

images, CNNs have shown promising results. Both 

Shin et al. [20] and Sridhar et al. [21] developed CNN 

models that accurately diagnose ACL tears. 

Jaturapisanukul and Pangarad [22] modified the 

feature extraction module of an existing CNN model 

to maintain diagnostic accuracy while reducing 

computational resources. Germann et al. [23] found 

that the performance of a CNN model in diagnosing 

ACL tears could approach that of fellowship-trained 

musculoskeletal radiologists, although performance 

may decrease with increasing MRI examination 

heterogeneity. These studies underscore the potential 

of CNNs as a valuable tool for diagnosing ACL tears 

from knee MRI images. Meniscus and patellofemoral 

cartilage lesions in people with osteoarthritis and 

ACL injuries were studied by Pedoia et al. [4], who 

assessed the efficacy of 3D convolutional neural 

networks (3D-CNN) in detecting and grading injury 

severity. The study showed that deep learning models 

can effectively detect meniscus lesions, with a 

sensitivity of 89.81% and a specificity of 81.98%. 

Despite the advancements in ACL injury 

detection, there are still limitations to the current 

methods. For instance, the sensitivity of MRI in 

detecting specific injuries such as meniscal ramp 

lesions is low, leading to underdiagnosis [3]. 

Additionally, the grading schemes utilized in research 

are often not used in clinical practice due to their 

time-consuming nature, further highlighting the need 

for improved detection methods [4]. 

Because of these drawbacks, researchers are 

considering applying sophisticated machine learning 

methods, including Generative Adversarial Networks 

(GANs), to the challenge of ACL injury diagnosis. 

Goodfellow et al. [24] were the first to create AI 

models called GANs, which are used to generate new 

data instances similar to the training data. The first 

component, the generator, generates new data 

instances, while the second component, the 

discriminator, determines whether or not these 

instances are genuine additions to the original training 

dataset [25]. 

Deep learning and GANs have been used in 

medical image analysis to enhance the performance 

of computer-aided diagnosis systems. They proved 

their utility in various tasks, including liver lesion 
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classification [26], closed-angle detection in anterior 

segment optical coherence tomography [25], and 

melanoma lesion segmentation [27]. Increased 

accuracy and performance in medical image analysis 

tasks were reported in these research studies. 

GANs are also employed for data augmentation 

in medical imaging. They can generate synthetic 

medical images, thereby enlarging the size and 

diversity of training datasets. This expansion can 

elevate the performance of deep learning models [26]. 

Studies on liver lesion classification1 and prostate 

cancer magnetic resonance imaging [28] have 

demonstrated this. 

Alongside data augmentation, GANs function in 

image reconstruction within medical imaging. They 

have been used to escalate the quality of knee plain 

radiography images [29] and to reconstruct superior-

quality artificial prostate cancer magnetic resonance 

images [28]. The primary aim of deploying GANs in 

image reconstruction is to upgrade image quality and 

furnish more precise and comprehensive information 

for medical diagnosis and treatment planning. 

Additionally, GANs are used for modality 

conversion in medical imaging. This procedure 

involves converting images from one modality to 

another, such as transmuting magnetic resonance 

images to computed tomography images or vice versa 

[30]. Modality conversion with the help of GANs can 

mitigate limitations and reinforce the strengths of 

different imaging modalities, hence providing 

valuable information for medical professionals. 

In the context of ACL injury detection, GANs 

could be used to augment existing imaging datasets, 

thereby improving the robustness of the detection 

models. Furthermore, GANs could be used to 

generate synthetic yet realistic images of ACL 

injuries, which could aid in training other machine 

learning models for injury detection. While the 

application of GANs in this area is still in its early 

stages, preliminary studies in related fields suggest 

they hold significant promise for improving the 

accuracy and efficiency of ACL injury detection [31]. 

The primary objective of this study is to explore 

the application of GANs for the detection of ACL 

injuries. Specifically, we aim to develop a GAN 

model that can accurately classify ACL injuries into 

three categories: healthy, partially injured, and 

completely ruptured, based on data from a Kaggle 

dataset. We also aim to evaluate the performance of 

our model using a confusion matrix and classification 

report metrics. Through this research, we hope to 

contribute to the existing knowledge on ACL injury 

detection and potentially pave the way for more 

accurate and efficient diagnostic methods in the 

future. 

The remainder of this paper is organized as 

follows: The dataset, preparation methods, GAN 

model architecture, training procedure, and 

assessment measures will all be described in the 

Methods section. In the Results section, we will show 

our confusion matrix and classification report, along 

with how well our model performed on the test data. 

In the next section, we will provide an analysis of the 

data, a discussion of its implications for ACL injury 

detection, an admission of the study's shortcomings, 

and recommendations for future investigation. 

Finally, we will present a summary of the significant 

findings of our study, an analysis of their potential 

implications for ACL injury identification, and some 

concluding remarks in the Conclusion section. 

2. RESEARCH METHODOLOGY 

2.1. Dataset 

The KneeMRI dataset [15] was downloaded 

from Kaggle and used in this study. Exams performed 

on a Siemens Avanto 1.5T MR scanner at the Clinical 

Hospital Centre Rijeka, Croatia, between 2006 and 

2014 were used to compile this dataset. Proton 

density-weighted fat suppression imaging was 

utilized for this purpose. There are 917 volumes of 

data, each containing a single image of the left or right 

knee in 12-bit grayscale. Each volume record in the 

dataset was double-blindly labeled with a diagnostic 

about the health of the ACL. This means that two 

evaluators, blind to one another's ratings, examined 

each volume record. 

The labels assigned to each volume record 

correspond to the condition of the ACL and are 

categorized as follows: (1) healthy, indicating no 

injury to the ACL; (2) partially injured, indicating 

some degree of injury to the ACL but not a complete 

rupture; and (3) completely ruptured, indicating a full 

tear of the ACL. These labels serve as the ground 

truth for training and evaluating our machine learning 

model. 

2.2. Preprocessing 

Before feeding the data into the GAN model, 

several preprocessing steps were undertaken to 

ensure the data was in a suitable format for analysis. 

Data Cleaning: The first step involved cleaning 

the data to remove any inconsistencies or errors. This 

included checking for and handling missing values 

and ensuring that all volume records were correctly 

labeled according to the condition of the ACL. 

Normalization: The grayscale images in the 

dataset were normalized to ensure that the pixel 

intensity values fell within a standard range. This is 

an important step as it helps reduce the data's scale 

and prevent the model from being biased towards 

features with higher magnitudes. The pixel 

intensities, originally ranging from 0 to 4095 due to 

the 12-bit depth, were scaled to fall within the range 

of 0 to 1. 

Data Augmentation: Data augmentation 

methods were used to boost the quantity and variety 

of the dataset. Specifically, this required applying 

transformations such as rotations, translations and 

flips to the source images to generate new data 
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instances. As a result, the model can improve its 

generalization capacity by learning to recognize ACL 

situations in various orientations and positions and 

benefiting from the more significant amount of 

available training data. 

Data Splitting: Finally, we divided the data into 

training, validation, and test sets. The model is trained 

using the training set, validated using the validation 

set to fine-tune the model parameters and prevent 

overfitting, and tested using a separate dataset. 

These preprocessing steps are crucial in 

preparing the data for analysis and ensuring that the 

GAN model can learn effectively from the data. 

2.3. GAN Architecture 

The architecture of the GAN used in this study 

consists of two main components: the generator and 

the discriminator, as shown in Figure 1. 

 

 
Figure 1. GAN Architecture 

 

In order to create fresh data instances similar to 

the training data, the generator employs a neural 

network. Using deconvolutional (or transposed 

convolutional) layers, it accepts a random noise 

vector as input and outputs data instances. In order to 

fool the discriminator, the generator must come up 

with fake data that looks just like the genuine thing. 

As seen in Equation 1, the loss function of a generator 

is commonly defined as the negative log-likelihood of 

fooling the discriminator. 

ℒ𝒢 = − 𝑙𝑜𝑔 (𝐷(𝐺(𝑧))) (1) 

where 𝐷 is the discriminator, 𝐺 is the generator, 

and 𝑧 is the random noise vector. 

The discriminator is a second neural network 

that tries to tell the difference between training set 

instances of genuine data and generator-created fakes. 

It takes in a data instance and spits out the likelihood 

that it represents the real data distribution. The 

discriminator is taught to prioritize accuracy over 

speed when determining whether an input is genuine. 

Equation 2 expresses the discriminator's loss 

function. 

ℒ𝒟 = − 𝑙𝑜𝑔(𝐷(𝑥)) − 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (2) 

 

where 𝑥 is a real data instance. 

In a two-player minimax game, the generator 

and discriminator are trained simultaneously, with the 

generator attempting to mislead the discriminator 

while the discriminator strives to categorize actual 

and fake data instances accurately. In Equation 3, we 

may express the GAN's overarching goal as a single 

number. 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

ℒ𝒟 + ℒ𝒢  (3) 

2.4. Training and Testing 

This study's GAN was trained using a two-step 

iterative process involving the discriminator and the 

generator. The training was performed over 1000 

epochs, each consisting of several mini-batches of 

size 128. 

The first step of each cycle involved training the 

discriminator. This was accomplished by feeding the 

generator a stream of random noise in images. These 

synthetic images were then fused with authentic 

images from the dataset used for training. Using the 

binary cross-entropy loss function, the discriminator 

was taught to determine whether the photos were 

authentic. For binary classification problems, this loss 

function quantifies the discrepancy between the 

discriminator's predictions and the correct labels. 

Each iteration's second phase involved training 

the generator. In order to accomplish this, we needed 

to generate another set of images using noise. In 
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contrast to the discriminator training phase, the 

images in this phase had the 'real' label applied to 

them. We next used the same images and labels to 

train the combined generator-discriminator model 

using the binary cross-entropy loss function. The goal 

at this stage was adjusting the generator weights to 

generate images that the discriminator would 

correctly label as real. 

This two-stage procedure was performed on the 

training dataset every time a new epoch began. Each 

epoch's batch-specific discriminator and generator 

losses were computed and displayed. The alternating 

discriminator and generator training stabilized the 

training process to prevent one component from 

becoming overly potent. This method is frequently 

employed to keep the generator and discriminator in 

check during GAN training. Following the training 

procedure, the generator was then used to produce 

images for each class.  

The subsequent stage involves deploying the 

trained model on the testing data. The model will 

examine the features of the testing data and generate 

predictions based on the knowledge acquired during 

the training stage. These predictions are subsequently 

compared to the actual values for each test data 

record, commonly referred to as the "ground truth." 

This step aims to assess the accuracy of the model's 

predictions. 

2.5. Evaluation Metrics 

The evaluation of our model will be based on 

two key metrics: the confusion matrix and the 

classification report. These metrics were chosen 

because they provide a comprehensive overview of 

the model's performance across all classes (healthy, 

partially injured, and completely ruptured). 

The performance of an algorithm can be 

visualized using the confusion matrix, which is a table 

layout. Instances belonging to one predicted class are 

represented by rows in the matrix, while columns 

represent those belonging to another actual class. The 

name comes from the fact that it is simple to tell if the 

system is mixing up two types of data (in other words, 

if it frequently mistakes one for the other).  

Each class's precision, recall, F1-score, and 

support are detailed in the classification report. The 

F1-score can be understood as a weighted harmonic 

mean of the accuracy and recall, where precision is 

the classifier's ability to avoid incorrectly labeling a 

sample as positive, and recall is the classifier's ability 

to locate all positive samples. The number of 

instances of each class in the actual response values 

is called support. 

In mathematical terms, for binary classification: 

a. Precision (P) is defined as 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

where TP is the number of true positives, and FP 

is the number of false positives. 

b. Recall (R) is defined as 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

where FN is the number of false negatives. 

 

c. F1-score is the harmonic mean of precision and 

recall, defined as 

𝐹1 = 2 ⋅
𝑃⋅𝑅

𝑃+𝑅
 (6) 

These metrics will be extended to the multi-

class case in our study, considering each class against 

the rest. 

All stages of this research can be visualized in 

Figure 2. 

 

 
Figure 2. The stages of the research 

 

3. RESULTS 

3.1. Initial Dataset 

The initial dataset contains 917 grayscale 

images representing either left or right knees. Each 

volume record includes various information about 

specific features such as examId, seriesNo, 

aclDiagnosis, kneeLR, roiX, roiY, roiZ, roiHeight, 

roiWidth, roiDepth, and volumeFilename. The 

aclDiagnosis feature indicates the diagnosis assigned 

to each volume record regarding the condition of the 

anterior cruciate ligament, which can be categorized 

as (1) healthy, (2) partially injured, or (3) completely 

ruptured.  

After the data cleaning, normalization, and data 

augmentation processes, we split 80% of the data for 
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training and 20% for testing, with the distribution 

shown in Table 1. 
 

Table 1. Data distribution for training and testing 

Class Total Training Testing 

healthy 690 552 138 

partially injured 172 138 34 

completely ruptured 55 44 11 

3.2. Model Performance 

The performance of our GAN model on the test 

data was evaluated using a confusion matrix and a 

classification report. The confusion matrix for our 

model is shown in Figure 3. 

 

 
Figure 3. Confusion Matrix 

 

The classification report for our model is 

described in Table 2. 
 

Table 2. Classification report 

class precision recall f1-score support 

healthy 0.93 0.98 0.95 131 
partially 

injured 
0.91 0.84 0.87 37 

completely 

ruptured 
0.82 0.60 0.69 15 

accuracy   0.92 183 
macro avg 0.89 0.80 0.84 183 

weighted 
avg 

0.92 0.92 0.91 183 

4. DISCUSSIONS 

4.1. Result Analysis 

The confusion matrix shows that our model is 

highly accurate in predicting healthy ACLs with 128 

correct predictions out of 131 healthy cases. The 

model correctly predicted 31 out of 37 cases of 

partially injured ACLs. The model correctly predicted 

9 out of 15 cases of completely ruptured ACLs. 

The model shows promising results in detecting 

healthy and partially injured ACLs but has trouble 

correctly identifying severely torn ACLs, as shown 

by the precision, recall, and F1-score for each class. 

The model accurately categorized 92% of the 

instances in the validation set, as indicated by the 

overall accuracy of 0.92. Both the overall average and 

the weighted average scores are very indicative of the 

model's superior performance across all classes. 

4.2. Interpretation 

The model results indicate a high degree of 

accuracy in predicting the ACL condition from the 

MRI images. The model's overall accuracy is 92%, 

suggesting that it correctly classified the ACL 

condition in 92% of the cases in the test data. 

Looking at the confusion matrix, the model 

shows a strong performance in identifying healthy 

ACLs, with 128 correct predictions out of 131 actual 

healthy cases. This suggests that the model 

effectively distinguishes healthy ACLs from injured 

ones. 

The model correctly predicted 31 out of 37 cases 

of partially injured ACLs. While this is a relatively 

high accuracy, the six misclassifications indicate that 

there may be some overlap in the features of healthy 

and partially injured ACLs that the model is 

struggling to distinguish. 

The model had the most difficulty correctly 

identifying completely ruptured ACLs, predicting 

only 9 out of 15 cases. This suggests that the model 

may struggle to distinguish between partially injured 

and completely ruptured ACLs, possibly due to 

similarities in their appearance in MRI images. 

The classification report provides further 

insights into the model's performance. The precision, 

recall, and F1-score for each class indicate that the 

model performs well in identifying healthy and 

partially injured ACLs but has some difficulty with 

completely ruptured ACLs. This is reflected in the 
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lower recall and F1-score for the completely ruptured 

class, indicating that the model is less sensitive and 

accurate in identifying this condition. 

Overall, these results suggest that while the 

model performs well in general, there may be room 

for improvement in its ability to distinguish between 

different degrees of injury. Future work could focus 

on refining the model or incorporating additional 

features to improve its performance in this area. 

4.3. Implications of findings 

The findings of this study have several 

important implications for detecting ACL injuries. 

Firstly, the high accuracy of the model in 

identifying healthy ACLs suggests that machine 

learning techniques, specifically GANs, can be 

effectively used to rule out ACL injuries in patients. 

This could potentially reduce the need for 

unnecessary treatments or interventions in patients 

with healthy ACLs. 

Secondly, the model's ability to distinguish 

between partially injured and completely ruptured 

ACLs, although imperfect, indicates that machine 

learning models can potentially be used to grade the 

severity of ACL injuries. This could aid in treatment 

planning, as different grades of injury may require 

different treatment approaches. 

However, the model's lower performance in 

identifying completely ruptured ACLs suggests that 

further work is needed to improve the sensitivity of 

machine learning models in detecting severe ACL 

injuries. This could involve refining the model 

architecture, incorporating additional features, or 

using larger and more diverse training datasets. 

These findings suggest that machine learning 

models hold significant promise for improving the 

accuracy and efficiency of ACL injury detection. 

However, it is essential to note that these models 

should complement, rather than replace, clinical 

judgment and other diagnostic tools. Further research 

and validation studies are needed to realize these 

models' potential in clinical practice fully. 

4.4. Limitations 

While our study presents promising results, it is 

important to acknowledge several limitations that 

may have influenced our findings. 

Dataset Limitations: The dataset used in this 

study was retrospectively collected from a single 

hospital center, which may limit the generalizability 

of our findings. The MRI images were all obtained 

using the same scanner and imaging technique, which 

may not reflect the variability in imaging quality and 

techniques used in other settings. Furthermore, the 

dataset is relatively small and imbalanced, with fewer 

partially injured and completely ruptured ACLs than 

healthy ACLs. This could potentially bias the model 

towards predicting the majority class (healthy ACLs). 

GAN Architecture Limitations: While GANs 

have shown promise in various applications, they are 

not without their limitations. GANs can be difficult to 

train due to the challenging nature of the minimax 

optimization problem, which can lead to issues such 

as mode collapse, where the generator produces a 

limited variety of samples. Additionally, the black-

box nature of GANs makes it difficult to interpret 

their decision-making process, which can be a critical 

factor in medical applications. 

Evaluation Metrics Limitations: While often 

utilized in classification issues, the evaluation 

measures employed in this study may not accurately 

reflect the model's actual performance. Precision, 

recall, and F1-score are all binary measures extended 

to the multi-class scenario in our research; accuracy, 

on the other hand, might be deceptive in imbalanced 

datasets. 

Lack of Clinical Validation: Finally, while our 

model showed high accuracy in a test set, it was not 

validated in a clinical setting. The model's 

performance in real-world conditions, with varying 

image quality and patient populations, remains to be 

seen. 

These limitations highlight future work and 

improvement areas, including using larger and more 

diverse datasets, exploring different GAN 

architectures or other machine learning models, using 

additional or alternative evaluation metrics, and 

conducting clinical validation studies. 

4.5. Future Work 

The results of this study open several avenues 

for future research and potential improvements to the 

model. 

Larger and More Diverse Datasets: Future 

studies could use larger and more diverse datasets, 

including MRI images from different hospital centers 

using other scanners and imaging techniques, to 

improve the model's generalizability. This could also 

help to address the imbalance in the dataset, providing 

more examples of partially injured and completely 

ruptured ACLs for the model to learn from. 

Improved GAN Architecture: While the GAN 

architecture used in this study showed promising 

results, there is always room for improvement. Future 

work could explore different GAN architectures or 

modifications to the existing architecture to improve 

performance. This could include conditional GANs, 

which could improve the model's ability to 

distinguish between different degrees of injury. 

Alternative Machine Learning Models: 

Besides GANs, other machine learning models could 

be explored for ACL injury detection. This could 

include different deep learning models, such as 

Convolutional Neural Networks (CNNs), or 

traditional machine learning models, such as Support 

Vector Machines (SVMs). 

Additional Evaluation Metrics: Additional or 

alternative evaluation criteria could be used in future 
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research to provide a more in-depth assessment of the 

model's performance. This may involve 

measurements like the Matthews Correlation 

Coefficient (MCC) or the Area Under the Receiver 

Operating Characteristic Curve (AUROC). 

Clinical Validation: Finally, a critical step in 

future research will be to validate the model in a 

clinical setting. This would involve testing the 

model's performance in real-world conditions, with 

varying image quality and patient populations, to 

determine its suitability for clinical use. 

By addressing these areas, future research can 

continue to advance the field of ACL injury detection 

and contribute to the development of more accurate 

and efficient diagnostic tools. 

5. CONCLUSION 

Our research explored the application of GANs 

for detecting ACL injuries. Using a dataset of MRI 

images, our model was trained to classify ACL 

conditions into three categories: healthy, partially 

injured, and completely ruptured. The model's 

performance was evaluated using a confusion matrix 

and a classification report, demonstrating an overall 

accuracy of 92%.  

The high accuracy of our model suggests that 

machine learning techniques, specifically GANs, 

hold significant promise for improving the accuracy 

and efficiency of ACL injury detection. The ability of 

our model to distinguish between different degrees of 

injury could potentially aid in treatment planning, as 

various grades of injury may require different 

treatment approaches. However, the model's lower 

performance in identifying completely ruptured 

ACLs indicates that further work is needed to 

improve the sensitivity of machine-learning models 

in detecting severe ACL injuries. 

While our findings are promising, they also 

highlight the challenges in applying machine learning 

models in medical imaging, such as the need for 

extensive and diverse datasets, the difficulty in 

training GANs, and the need for clinical validation. 

Despite these challenges, our work represents a 

significant step forward in applying machine learning 

for ACL injury detection. We hope our research will 

inspire further studies in this area, contributing to 

developing more accurate and efficient diagnostic 

tools for ACL injuries. 
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